Edge contraction and edge removal on iterated clique graphs
نویسندگان
چکیده
The clique graph K(G) of a graph G is the intersection graph of all its (maximal) cliques. We explore the effect of operations like edge contraction, edge removal and others on the dynamical behaviour of a graph under the iteration of the clique operator K. As a consequence of this study, we can now prove the clique divergence of graphs for which no previously known technique would yield the result. In particular, we prove that every clique divergent graph is a spanning subgraph of a clique divergent graph with diameter two.
منابع مشابه
Reduced clique graphs of chordal graphs
We investigate the properties of chordal graphs that follow from the well-known fact that chordal graphs admit tree representations. In particular, we study the structure of reduced clique graphs which are graphs that canonically capture all tree representations of chordal graphs. We propose a novel decomposition of reduced clique graphs based on two operations: edge contraction and removal of ...
متن کاملClique-width and edge contraction
We prove that edge contractions do not preserve the property that a set of graphs has bounded clique-width.
متن کاملOn the edge-connectivity of C_4-free graphs
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
متن کاملCohen-Macaulay $r$-partite graphs with minimal clique cover
In this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay. It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
متن کاملTotal domination in $K_r$-covered graphs
The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 161 شماره
صفحات -
تاریخ انتشار 2013